Finite Element Analysis on Steel-frame Designed for Self-propelled Tea Picker
-
Graphical Abstract
-
Abstract
The design of a steel-pipe frame for the self-propelled tea picker was subjected to a finite element analysis to determine its engineering durability. Statics of the design, as evaluated by ANSYS, showed a maximum stress of 27 Mpa and strain of 0.2 mm could be exerted on the welding at the top-left-rear corner of the frame. And, they were within the design tolerance. The vibration analysis on the design indicated that the 1st, 2nd and 5th were in a bending mode, the 3rd and 4th a torsional mode, and the 6th a bending-and-torsion mode. The principle frequencies of the modes were 18.021, 25.346, 31.636, 36.209, 45.892 and 51.694 Hz for the 1st through the 6th mode, respectively. The analysis also showed the sources of vibrations were 38.3~41.7 Hz coming from the engine, 20 Hz from the cutter, and 3 Hz or lower from the ground-surface friction. Thus, the vibrations would not likely to resonate with the 6 modes listed above to cause a concern for the mechanical integrity of the picker frame. Consequently, the design was considered safe and functional for the engineering requirements.
-
-